3D Reconstruction from Road Marker Feature Points

Team 6 你就繼續

D11921B09 徐子程 B08901081 黃靖元 B08901057 吳瑋倫 B08901046 詹侑昕

Outline

- Literature review
- Method
 - Road marker identification
 - Point cloud reconstruction
- Results
- Conclusion

Literature review - Pinhole model

 f_x, f_y : Focal lengths

 x_0, y_0 : Center of the image

X, Y, Z: 3D space coordinates

Road marker identification

Using <u>segment anything</u> from Meta AI to extract all possible segments

	seq1	seq2	seq3	test1	test2
Avg segments	81	72	77	89	76

Filtering valid segments

Steps:

- 1. Read bounding box and camera mask
 - a. If bounding box probability < thresho
- 2. Threshold raw image
- 3. For every segments, if following conditi
 - a. It is in camera mask
 - b. It is not in any bounding box
 - c. If the segments in (2) is black and the percentage of segment in boundi

Find contours & corners

Apply opency functions

- findContours
- approxPolyDP

findContours

approxPolyDP

From pinhole model

Point cloud blending from multiple cameras

- 1. Sort the frames by timeline
- 2. Take adjacent 4 frames' point clouds
- 3. Transform 4 point clouds to base_link and mix them to single point cloud set
- 4. Apply this mixed point cloud set to four frames

Results

Seq1:

Results - Point cloud blending

Results - Point cloud blending

Test1:

Results - Point cloud blending

Test2:

Results - leaderboard

組別	組名	Public	Private	Total
3	我不會CV	0.15676	0.10998	0.13337
9	毛毛	0.17639	0.10056	0.13848
1	CV期末專題第一組	0.17459	0.14856	0.16158
2	十二星座_十二新桌	0.17997	0.20678	0.19338
16	莊家臻臻	0.17779	0.21819	0.19799
6	你就繼續	0.2017	0.21322	0.20746
14	徵二手3080	0.19428	0.22417	0.20923
11	兄弟登山各自努力	0.20335	0.22815	0.21575

Conclusion

- Successfully generate point clouds by pinhole model
- Blending images to get more complete point clouds
- Threshold of ICP will influence the performance

Future work

- Adjust the corner points to avoid the misinterpretation on the boundaries of the road mark
- Ensemble on the same corner points given by different cameras
- Collect more information other than those given in the bounding box(for example, the double yellow lines)

References

[1] "Lab 6: Computer Vision", EECS C106A/206A | Introduction to Robotics, Fall 2021
<u>https://pages.github.berkeley.edu/EECS-106/fa21-site/assets/labs/Lab_6_Computer_Vision.pdf</u>
[2] Kirillov, Alexander, et al. "Segment Anything." *ArXiv*, 2023, /abs/2304.02643. Accessed 15 Jun. 2023.

Appendix - Post processing

Method: Trajectory smoothing

